

NTHANID	57138.91 $\mathbf{L a}$ wnrwewn	Ce	Pr	Nd	pmint	Sm	Eu	Gd	Tb твамй	Dy	$\begin{gathered} 67649.93 \\ \text { Ho } \\ \text { Howumum } \end{gathered}$	Er єеами	Tm	$\mathbf{Y b}$	$\mathbf{L u}$
	$\underset{\text { нетмum }}{\mathbf{A c}}$		Pa	URANIUM	neptunum	UTONIUM	$\underset{\text { Numacum }}{\substack{\text { Avon }}}$	$\begin{aligned} & \text { CTDI } \\ & \text { curum } \end{aligned}$	BERKELIUM	$\begin{aligned} & 98 \\ & \mathrm{C}^{(251)}{ }^{(21)} \end{aligned}$	STEINIUM	FERMUM	NDELEVIum		

Important Equations

$$
\text { Molarity }(M)=\frac{\text { No. of moles of solute }}{\text { Volume of solution (in liter) }}
$$

$$
\operatorname{Normality}(\mathrm{N})=\frac{\text { No. of gram equivalent of solute }}{\text { Volume of solution (in liter) }}
$$

$$
\text { No. of gram equivalent of solute }=\underline{\text { mass } \text { of solute }}
$$

Equivalent mass

Equivalent mass $=\underline{\text { molar mass }}$ valance

$$
\text { so Normality }(N)=\underline{n} \text { of solute } * \text { valance of solute }
$$

Volume of solution (in liter)
Or Normality (N) = Valance * Molarity (M)
where valance (K) is an integer constant ≥ 1 and can be as follow:

matter	\mathbf{K}	Molar mass	Equivalent mass
HCl	1	36.5	36.5
$\mathrm{H}_{2} \mathrm{SO}_{4}$	2	98.1	49.0
NaOH	1	40	40
$\mathrm{Al}(\mathrm{OH})_{3}$	3	78	26
$\mathrm{~K}_{2} \mathrm{SO}_{4}$	2	174.3	87.2

$$
\text { Molality (m) }=\frac{\text { No. of moles of solute }}{\text { Mass of solvent (in } \mathrm{Kg} \text {) }}
$$

Mass Percent,

Volume Percent,

Mole fraction,

$$
\begin{gathered}
\%(\mathrm{w} / \mathrm{w})=\frac{\text { Mass of solute }}{\text { Mass of solution }} \times 100 \% \\
\%(\mathrm{v} / \mathrm{v})=\frac{\text { Volume of solute } \times 100 \%}{\text { Volume of solution }} \\
X_{i}=\frac{\text { Mole of a component }}{\text { Total moles of components in solution }}
\end{gathered}
$$

Practical Exercises Involving Solution Concentration

(1) A 0.750 L aqueous solution contains 90.0 g of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. Calculate the molar concentration of the solution in mol. L^{-1}. $(\mathrm{M}=2.61 \mathrm{~mole} / \mathrm{L})$
(2) What mass of NaCl should be dissolved in 152 mL of a solution so that the concentration of the solution is $0.364 \mathrm{M} ?($ mass $=\mathbf{3 . 2 3} \mathbf{g})$.
(3) A patient has a cholesterol count of $206 \mathrm{mg} / \mathrm{dL}$. What is the molarity of cholesterol in this patient's blood if the molecular mass of cholesterol is $386.64 \mathrm{~g} / \mathrm{mol}$? $(1 \mathrm{~L}=10 \mathrm{dL}) . \quad(\mathbf{M}=\mathbf{0 . 0 0 5} \mathbf{~ m o l} / \mathrm{L}) \quad\left(\right.$ Note: $\left.\mathbf{1} \mathbf{~ m g}=\mathbf{1 0}^{-3} \mathrm{~g}\right)$
(4) What the molality of solution if 15.0 g of dextrose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is dissolved in 200 mL water? ($\mathrm{m}=\mathbf{0 . 4 2} \mathbf{~ m o l e} / \mathbf{K g}$ solvent) .
(5) A mass of 98 g of sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, is dissolved in water to prepare a 0.500 N solution. What is the volume of the solution? $(\mathrm{V}=4.0 \mathrm{~L})$.
(6) What is the mass of HNO_{3} dissolved in one liter of solution of a molality of $0.5 \mathrm{~mol} . \mathrm{Kg}^{-1}$ (knowing that the density of solution is $0.997 \mathrm{~g} / \mathrm{mL}$)? In this problem replace the word solution with the word solvent

$$
(\text { mass }=31.4 \mathrm{~g})
$$

(7) A solution of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, contains 53.0 g of solute in 215 mL of solution. What is its molarity and normality?

$$
\text { (} \mathrm{M}=2.33 \mathrm{~mole} / \mathrm{L}, \mathrm{~N}=4.66 \text { g.eq./L). }
$$

(8) What the mass of copper(II) nitrate, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, is present in 50.00 mL of a 5% of aqueous solution? Assume that d of solution $=1.0 \mathrm{~g} / \mathrm{mL}$, i.e. its volume $=$ its mass $($ mass $=2.5 \mathrm{~g})$
(9) Antifreeze is a solution of ethylene glycol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ in water. If 4.50 L of antifreeze contains 27.5 g of ethylene glycol, what is the mole fraction of ethylene glycol? Assume that dl of antifireeze solution $=\mathbf{1 . 0} \mathrm{g} / \mathrm{mL}$, i.e. its volume $=$ its mass $(X=0.002)$
(10) A 7.5% potassium chloride solution is prepared by dissolving enough of the salt to give 100.0 g of solution. What is the mass of water required? (mass of water 92.5 g)

